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Abstract 
The diffuse scattering for X-rays or neutrons is de- 
rived analytically for equilibrium or non-equilibrium 
nanoscale structures distributed according to any set of 
suitable distribution functions. A disordered lattice gas 
model has been used basically for one dimension but for 
objects that may have higher dimensions. The results for 
multilayers, phase separation, domain patterns, surface 
roughness and 'hut' clusters are discussed and explicit 
formulae are given. 

1. Introduction 
With the continued development of high-flux sources 
for neutrons and X-rays, as well as the He-scattering 
technique, it has become possible to study the diffuse 
scattering resulting from nano- or mesoscale objects. 
Considerable literature already exists on the subject, 
developed in various fields. A comprehensive review 
can be found in the work by Jagodzinski & Frey (1992) 
and further developments by Pflanz & Moritz (1992) 
and Fullerton, Schuller, Vanderstraeten & Bruynseraede 
(1992). The latter papers derive expressions for nu- 
merical solutions. In this paper, we focus on deriving 
analytical expressions for the diffuse scattering from 
disordered structures. 

The phenomena of interest on the nano- or mesoscale 
may be the results of equilibrium properties but are 
more often related to non-equilibrium states of matter 
and occur in several different fields of physics. Some of 
the first problems considered were the stacking faults 
found as one of the most important defects in met- 
als at low temperatures and in martensitic polytype 
materials (Landau, 1937; Lifshits, 1937; Hendricks & 
Teller, 1942; Jagodzinski, 1949; Berliner & Werner, 
1986; Berliner & Gooding, 1994). It occurs in pattern 
formation under epitaxic growth of surfaces where ter- 
raced islands or 'huts' may start to be formed (Mo, 
Savage, Swartzentruber & Lagally, 1990; Zeppenfeld, 
Krzyowski, Romainczyk, Comsa & Lagally, 1994). A 
presently very active field of research concerns self- 
organization (Kern, Niehus, Schatz, Zeppenfeld, Goerge 
& Comsa, 1991; Zeppenfeld, Krzyowski, Romainczyk, 
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Comsa & Lagally, 1994), which is an equilibrium result 
of elastic relaxation (Shchukin, Borovkov, Ledentsov 
& Bimberg, 1995; Shchukin, Borovkov, Ledentsov & 
Kop'ev, 1995, 1996) in which almost-ordered nanoscale 
structures spontaneously form on a crystal surface. Other 
problems of relevance are found in artificially grown 
multilayer systems with some randomness or distribu- 
tion in the layer thickness (Fullerton, Schuller, Van- 
derstraeten & Bruynseraede, 1992). Examples are also 
found in the phase-separation problem in binary alloys 
(Fratzl, Lebowitz, Penrose & Amar, 1991) or antiphase 
structures such as the high-temperature superconductors 
YBa2Cu306+ x (YBCO) (Poulsen, Andersen, Andersen, 
Bohr & Mouritsen, 1990; Khachaturyan & Morris, 1990; 
Aligia, 1993) and in Ising magnets. Related problems 
occur in biophysics (Zhang, Suter & Nagle, 1994) and 
even in computer-simulation physics (Lindg~d, 1994). 
It is important to go beyond, for example, the often- 
used simple Warren approximation (Warren, 1941, 1990) 
in describing scattering from variously sized objects 
in order to obtain their statistical size distributions. 
In a recent paper (Fiig, Andersen, Berlin & Lindg~d, 
1995) (note that in Table I therein, ~; only refers to the 
half-width, not the FWHM), the diffuse scattering was 
discussed in terms of distribution probabilities of sizes 
for the various scattering objects, while neglecting the 
distribution of the space between the objects. We shall 
extend this work considerably by first considering the 
distributions of all the space-filling objects. Second, we 
consider a large number of pertinent structural problems. 
For these, we derive the explicit scattering cross sections, 
taking into account the 'excluded-volume' effect exactly. 
The theory is a further development of the original work 
by Uimin (1994) in order to describe the microstructure 
of YBCO. In order to emphazise the universal aspects of 
the problems, we present the general theory rather than 
discussing a particular phenomenon. We shall restrict 
ourselves to considering the scattering aspects, without 
going into the physics of why the actual structures occur 
or are in equilibrium or not. 

The microstructures mentioned above are often ob- 
served using real-space methods like optical, electronic 
or scanning tunneling microscope techniques. With 
these, one obtains a direct picture of structures, whereas 
the statistical properties are more difficult to assess. 
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16 DIFFUSE SCATTERING FROM NON-OVERLAPPING STRUCTURES 

Scattering methods are in this respect complementary, 
giving a statistical average of the structures. It is 
the purpose of this paper to develop the theoretical 
background for determining statistical properties and 
distribution functions. We also include a consideration 
of the internal structure of the particles, which gives rise 
to characteristic Bragg peaks. For small nanometre-sized 
objects, this is important. For scattering from larger-scale 
objects, one is generally not interested in this aspect and 
therefore only uses the small-angle scattering technique 
studying the scattering close to the (0, 0, 0) 'Bragg' 
peak. This result can also be obtained from our theory 
by simple expansion in the wave vector q. 

We shall only consider the diffuse scattering as arising 
from breaking a perfect order of a lattice gas system. The 
general scattering theory was introduced by Fiig et al. 
(1995) in some detail and will not be repeated here. 
The exact results for the cross section will be given 
for the linear chain and the possible extrapolation of 
the results to higher dimensions will also be discussed. 
The 'excluded-volume' effects in higher dimensions is a 
long-standing problem in statistical mechanics (Reiss, 
Frisch & Lebowitz, 1959), still vigorously discussed 
(Torquato, 1995; Pflanz & Moritz, 1992: Fullerton et 
al., 1992). Analysis of diffuse scattering experimentally 
makes it clear that any other imperfection, such as 
lattice deformations and strains, also give rise to diffuse 
scattering. These will not be discussed here. The seminal 
work on such 'real' crystal problems is the book by 
Krivoglaz (1969); a recent discussion may be found in 
§4 of Jagodzinski & Frey (1992). 

The paper is organized as follows. First, an intro- 
duction of the probabilistic framework is given. In 
the following section, several examples are explicitly 
worked out for various problems of current interest. 
Concluding remarks complete the paper. 

2. Theory for the structure factor 

In this section, we shall derive the scattering cross 
section basically for a lattice gas system with defects. 
However, in fact, we consider a more general model 
that describes the scattering of a system of any num- 
ber of slabs of different lattices with different lattice 
constants and atoms with different scattering lengths. 
Their thicknesses are described by any suitable dis- 
tribution function, for example, a Poisson distribution 
or an exponential distribution. In a recent paper by 
Fiig et al. (1995), the line shape was calculated and 
discussed for such distributions of matter separated by 
arbitrary distributions of empty space, cf. Uimin (1994). 
Since the calculation of the cross sections derived in 
the present paper is similar, we do not present the 
equivalent numerical calculations here (also because this 
is more difficult to do generally with more than one 
distribution function). By further allowing for a profile 
in the scattering lengths, the theory can be used for 

reproducing at least certain aspects of scattering from 
higher-dimensional objects subject to the 'excluded- 
volume' constraint. 

2.1. Probabilistic prerequisite 

First, let us consider a simple example of a one- 
dimensional chain with lattice spacing a (for simplicity 
we set a = 1 in this section). On this chain, we distribute 
scattering particles in different length fragments of two 
structures: 61, where every site is occupied, and (52, 
where every second site is occupied. In addition, we 
allow fragments, where there are no scattering particles 
at the sites. These fragments can be of any length 
larger than 2 and are restricted by a particle at both 
ends. For computational convenience, we define 'empty'  
fragments, (50, which include the particle at the left 
end. This allows us to consider sequences of structured 
fragments in which any (50 fragment can be followed 
by another (50 fragment. The separating particle could be 
interpreted as an element of the (51 structure but including 
such a particle into a definition of the (50 fragment is 
a suitable computational trick. An example including 
these definitions is shown in Fig. 1. A realization of this 
situation is found in YBCO, where (51 would correspond 
to the projection of a domain of the ortho-I structure 
and (52 to the projection of an aligned ortho-II structure. 
Similar examples can be realized as a sequence of 
multilayers. We shall thus use the same convention 
for the fragments of all three types. On any fragment, 
the leftmost site is occupied by a particle. This is the 
last particle with the left fragment periodicity but it 
is counted as the first site of the rightmost fragment. 
The length of the (51 fragment, say g, coincides with 
the number of particles within that fragment. With the 
same number of particles, the length of the (52 fragment 
will be equal to 2g. For both cases, g ___ 1. However, 
for the 'empty'  fragments we have g >__ 3 because an 
'empty'  fragment with g = 1 (2) must be classified as 
61 ((52)" Let A/" be the total number of 1D lattice sites. If 
N6 (g) is the total number of fragments of length g of the 
6th kind (6 = O, 1, 2 for 'empty' ,  (51 and (52 fragments, 
respectively), the 'probabilities' are defined as follows: 

Oo(g) = Uo(g)/A/', 

Dl(g ) -- Nl (~)/A/', (1) 
D2(2g ) = N2(2g)/A/'. 

The sum of 'probabilities' is not equal to 1. The true 
probabilities, w 0, w I and w 2, for finding a fragment 
belonging to one of the three possible types of fragments 
are  

Wo = E Do(g)/79, 
~>3 

w, = ~_, D1(g.)/D, (2) 
g>1 

w 2 = ~ D2(2g) /D,  
~>1 



GENNADI UIMIN AND PER-ANKER LINDG.&RD 17 

where 

z) = ~ Do(e ) + ~ D,(g) + ~ D2(2g ). 
g>3 g>¿ g>l 

The D6 'probabilities' satisfy a total length constraint, 
and the number of particles constraint, yielding 

E gDo(g) + ~ gDl(g) + E 2gD2(2g) = 1, 
g>3 ~>1 g>l 

D0(e) + E ebb(e) + E gD (2g) = c ,  

~>3 g>l £>1 

where c is the concentration of particles. We shall further 
consider that correlations exist not only within separate 
fragments, as expressed by the 'probability' set {De}, 
but also between the nearest-neighbor fragments. The 
reason for including such correlations of higher rank is 
that a fragment of, say, the (5 2 type can be followed 
either by a 51 fragment or an 'empty' fragment, but 
not by another 6 2 fragment. On the other hand, an 
'empty' fragment is allowed to be followed by any 
kind of configuration. Clearly, if the 'empty' fragments 
are excluded, the situation becomes deterministic, which 
means that the (51 and ~5 2 fragments strictly alternate. We 
will be starting §3 with that particular case. 

Let us now generalize the above by considering 
any number of different types of structure. Equations 
(1)-(4), considered as definitions, are straightforwardly 
generalized by using an arbitrarily large set of D's: 
D,~ (g~) represents the 'probability' of finding a fragment 
of a structure type oe with length go,, i.e. 

D,~(g,,,) = N,~(gc,)/Af. 

Then the analog of (2) and (3) is 

D,~ = y~.D,~(g,~), 79 = y~'79 , w~ = 79~//9. (5) 

Let us introduce the double-fragment 'probabilities' 

Do,~(go,, g~) = No,~(eo,, g~)/./V', 

where N,~(g~ ,  g~) is the total number of o#3 fragments 
composed of the c~ and/3 types of lengths g,~ and g/~, 
respectively. Then let us define the decoupling scheme 
for the 'probabilities' of higher ranks, 

D,~f~(g,~,gf3 ) = D,~(g,~)W,~Df3(gf3 ). (7) 

This amounts to assuming a random sequence of possible 
type fragments (only subject to a probability constraint) 

(3) while neglecting any correlation between the length of 
the adjacent fragments. Summing over all neighbor- 
fragment possibilities gives the identities 

Oo,(g o, ) = ~~. ~-~.Do,~(go,, g~) = E ~~.D~o,(g/~, go,). 

Then it is clear from (7) that the elements W,w ~ must 
(4) satisfy the equation 

E w ~ v ~  = E v ~ W ~ o  = 1. (8) 

The W,~ z elements play a role of 'transition probabili- 
ties', i.e. they are matrix elements of an unnormalized 
transfer matrix. The transition probabilities satisfy the 
symmetry properties W,~Z = WZ, ~ if the system does not 
exhibit special chiral properties. Within this scheme, the 
'probability' of any rank can be decoupled: 

D,~,,~2...~,,(el,e2 . . . . .  g,,) 

--  D(~,c~2...~,_, (e l ,  g 2 . . . . .  en_ 1 ) W~,_,o, Dc~, (en) 

= D~, (gl)W~tc~2Dc~2(g2)... W~,_,,~D~,(g, ,) ,  (9) 

with the same constraints as (8) imposed on the set 
of elements W ~ .  We remark that the transfer-matrix 
method was used very early in the theory of diffuse 
scattering, cf. Jagodzinsld & Frey (1992). It has recently 
been used in a similar way for the domain distribution 
problem by Pflanz & Moritz (1992). We believe that 
the present formulation, in a transparent way, elucidates 
the approximation used in both theories, i.e. the Markov 
process. 

For the further derivation of the structure factor, we 
need a definition of averaging over various realizations 
for a physical quantity ) r  = F~, (el)F~2 (g2) • • • F~,, (g,,). 
It can be done as follows: 

(~:) = y ;  ED~,~2. . .~°(g , ,g2 ,  . . . ,g , , )  
{~} {e} 

× uo, (6) ]' 
X [ L E  E D a , a 2 . . . c ~ n ( e l , g 2  . . . . .  gn) (10) 

{~} {e} 

For n = 1, ( 1 0 )  takes the form 

(7)  = E w~r~, 
o~ 

(11) 

( • • _ _ • _ _ 0  0 • 0 • 0 • • 

0 2 I 0 0 1 2 1 2 0 

Fig. 1. An example of of two different co-existing structures labeled ~ and ~2 and in addition ,% representing an 'empty structure'. The particles 
(filled circles) are arranged in fragments and counted according to the convention explained in text. 
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where 
Fo` = EDo`(g)Fo`(e)/79~ (12) 

e 

is the ensemble average over a given distribution of the 
ath fragments. Equation (10) can be rewritten for any 
n _> 1 in the following way: 

(U) = 79n-1 E w,~Fo`, Wo`lazWo~2ra2 ><... 
Ot I . . . o ` n  

× Wo`,_~o`wo`Fo`,. (13) 

Let us explicitly discuss the 'transfer' matrix for 
the introductory example. When 'empty'  fragments are 
absent, Wll -- W22 = 0 because of the alternation, 
which also causes the number of fragments to be equal, 
791 = 792; so, according to (8), one obtains for the 
off-diagonal elements W12 --  W21 -- 1/791, i.e. 

0) W = ~kW21 W22 --  ~ . (14) 

The case where we consider 'empty'  fragments and one 
of the a -- a I or a 2 type structures is slightly different 
because Woo ~ 0. We find from (8) 

W =  fW°°\WÒ 0 w~aW°°') =~--~w 01 ( 1-wO`/wO1 01)" (15) 

Finally, we present the form of the 3 × 3 matrix that 
describes the 'transition probabilities' when all three 
kinds of fragments are allowed. Note that there are only 
three independent constraints imposed by (8) on the four 
formally independent Wo`fi's; this gives rise to one free 
parameter (w) in the matrix 

1 - (wl + w2)/wo 
1 +2wwl w2/w~ 

W = ~00 1 - ww2/wo 

1 - ww~/wo 

1 - ww2/wo 1 - wwl/wo~ 

0 w I " 
w 0 

(16) 

If we do not allow for segments with sparsely 
distributed single particles, here represented by 
'empty'  fragments, we have Woo = 0 and w = 
1 ~(Wo/W1-'}-Wo/W2--W~/WIW2) ; t h e n  W is fully 

determined by the constraints (8). 

2.2. Structure factor: general derivation 

In this section, we shall first derive the general ex- 
pression for the diffuse part of the structure factor S(q)  
for a linear chain consisting of different length fragments 
of different materials, which may have different lattice 
constants and different scattering lengths. Subsequently, 
we consider possible generalizations of the results to 
higher spatial dimensions. 

Let a represent the different kinds of locally ordered 
fragments, p is the total number of kinds; in our example 
above, p = 3. Next, let a 1, a 2 . . . . .  a k be a realized 
sequence of a large number, k, of these fragments occur- 
ring with the probability D,~ Ò Ò ~ (g l ,  g'~, g3 ~ek), 

1 2 3 . . .  k ~- " ' ' '  

which will be transformed according to (9). Let the 
lattice constant specific to an a-type fragment be denoted 
am. The scattering amplitude of the wave number q is the 
Fourier transform applied to the particles in the sequence 

A(q ,k )  

= bo`{ 1 + exp(iqa~) + . . .  + exp[iqa~(g I - 1)]} 

+ b~ exp(iqa~gl){ 1 + exp(iqa~) + . . .  

+ exp[iqa~(g 2 - 1)]} + b.~. exp[iq(a,~gl + aog2)] 
× {1 + e x p ( i q a T ) +  . . .  +exp[iqa.v(g 3 - 1)]} 

+ . . . .  (17) 

This can be partially summed over the fragments of 
length a J l ,  a~g 2 etc. Symbolically, the Fourier compo- 
nent can thus be written for the realization of k various 
fragments 

,A (q ,k )  = F(1) + F(1)F(2)  + F ( 1 ) F ( 2 ) F ( 3 )  + . . .  

+ F ( 1 ) F ( 2 ) . . . F ( k -  1)F(k). (18) 

Here, F(j)  is the scattering amplitude of thej th fragment 
(a  type) and F( j )  the separation phase factor, i.e. 

F~ (j) = ~ bc~ exp(iqao` r), 
~ 0  

F,~(j) = exp ( iqaJ j ) ,  

where bo  ̀ is the specific scattering length. We notice 
that F( j )F( j )*  = 1. By introducing a specific a m, we 
can describe the situation with arbitrary lattice constants 
for the ath fragments. [Note that the 'empty'  fragments 
with one particle to the left considered in §2 represent a 
special case. They can be treated as separate unit-length 
a-type structures but then the matrices may become 
very large. It is simpler to include them as a general 
special 0 type with arbitrary length r for which we must 
use F(j) = 1 and F( j )  = exp(iqrj). The distribution 
function for the length of the fragments is continuous 
Do(r ) , excluding .(prime) any explicitly involved lattice 
constant ,, • r ~ ' -  ~'~" 3o Do(r ) dr = 790. ] 

For the particular example discussed in §2, the a~ 's  
were supposed to be integers 1, 2 and the scattering 
lengths equal to 1. This gives the expressions for scat- 
tering amplitudes for fragments of length g and 2g: 

F0(e)  = 1, 

F , ( g )  = [1 - e x p ( i q g ) ] / [ 1  - e x p ( i q ) ] ,  

F 2 ( 2 g  ) = [1 - e x p ( i q 2 g ) ] / [ 1  - e x p ( i 2 q ) ] .  

(19) 
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The series A(q, k) depends not only on q but also on the 
specific realization of the a '  s. However, upon averaging, 
it becomes a convergent sum for large values of k and 
therefore independent of k when considering a large 
number of fragments. The structure factor is on the 
other hand in most cases of interest independent of a 
concrete realization of fragments in the chain. Thus it 
must be averaged over possible realizations. Let us start 
by calculating a quantity/C(q, k), which becomes S(q) 
fo rk - - - ,  ec. 

lC(q,k) = (,A(q,k),A*(q,k)), (20) 

where () indicates such an average over all possible 
configurations with k fragments according to (10). We 
note that the leading term in IC(q,k) is linear in k. 
Further, we notice that E(q, k) can be written as 

1C(q,k) = ([F(1) + F(1)F(2)  + . . .  

+ F ( 1 ) . . . F ( k -  1)F(k)] x [c.c.]) 

= lC(q , k -  1) + (F(1)F*(1))  

+ { (F*(1)[F(1)F(2) + . . .  

+ c ( a ) . . . F ( k -  1)V(k)]) + c.c.}. 

To leading order in k, we then come to the expression 

1C(q,k) = k{ (F(1)F*(1))  + ((F*(1)[F(1)F(2) + . . .  
+ r ( a ) . . . F ( k -  1)F(k)]) + c.c.)}, (21) 

where the first term represents the scattering from the 
independent fragments 

P 
(F(1)F*(1))  = ~ w~F~F*. (22) 

The second is an interference term, which is explicitly 
given by 

(F* (1) [F(1)F(2) + . . .  + F ( a ) . . .  F(k - 1)F(k)]) 

= 79~ w~,V~,r~, ~ W~,~2w~2F~ 2 + . . .  
0¢ 1 Ot 2 

-t- 79k--1E w~ F* F~, 2 W~,~2wo~2F,~2 .. . 
Ot I Og2 

X ~ % k _ 2 O C k _ l W o : k _ l r O t k _ l  ~ % k _ l O l k W o ~ k F o l k  . 
Otk-- I O:k 

(23) 

The averaging in (22)-(23) is performed in accordance 
with definitions (10)-(13). Any term on the right-hand 
side of (23) can be generally written as (LIM[R), where 
(L] and JR) are p-component bra and ket vectors, respec- 
tively, and M is a p x p matrix. These vectors have the 
(a  = 1, 2 , . . . , p )  components 

(LI~ -- w~F~F~, 

]R),~ = w oFo. (24) 

In the particular case of a one-dimensional set of frag- 
ments characterized by a m and b,~, (22) and (24) can be 
transformed using 

• ] b 2 F~F~ = 7 ~[(1 - _Fo~ ) + c.c.]/[1 - cos(qa~)] 

= b 2 ~-'~[D~(t)/79~] sin2(ao~gq/2)/sin2(a~q/2), 
g 

F*Fa = ba(F ~ - l ) / [ l  - exp ( - iqa~)] ,  

Fo, = bo~(1 - F,~)/[I - exp(iqa~)]. (25) 

The first term has been reformulated to the more familiar 
form for scattering from independent fragments. The 
matrix M can be presented in the form of a series that 
can be explicitly summed in the case of k ~ oc: 

M = 79(1 + S + S 2 -~- . . . -Jr- s k - 2 ) W  - -  79(1 - s ) - l w .  

(26) 

According to (23), the elements of the matrix S are 

S~9 = 79W~w;3F ~. (27) 

Finally, collecting all the terms on the fight-hand side of 
(21), we obtain the compact expression for the structure 
factor: 

S(q) = (A{/(g)){(F*(1)F(1)) + ((LIM[R) + c.c.)}. 

(28) 

We have used the fact that in sufficiently long systems 
the total number of fragments, k, can be defined as 
N' / (g) ,  where (g) is the average length of a fragment. 
According to (11) and (12), (g) = y-~,~ wogo, and g~ = 
Y~tgD~/79~, so (g) = ~'~.ew~gD~(g)/79. The diffuse 
part of S(q) scales as the total number of sites N" of the 
system while the Bragg peak intensity would scale as 
N "2. We do not discuss the Bragg scattering contribution 
in this paper. 

Pflanz & Moritz (1992) have derived a similar form 
to (28) for the diffuse scattering in what appears to be 
the same approximation. However, they did not succeed 
in finding the closed analytical form and left the result 
in terms of a recursive problem. 

2.3. Structure factor: general result 
In the previous section, we derived the important 

general formula for the diffuse scattering from a one- 
dimensional non-overlapping distribution of differently 
scattering fragments: 

8(q)  (x (F*(1)F(1))  + ((LIMIR) + c.c.). (29) 

The first term represents the independent scattering from 
the various fragments and the last term is the interference 
term. The involved quantities are defined in the previous 
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section. The interference term can be very important in 
some cases, as will be discussed below and illustrated 
by examples in the following section. 

Let us discuss extensions of the above result to 
dimensions higher than one. The scattering amplitude 
.A(q, k) of (17) is of a similar form, except that q a J  
is replaced by a scalar product q . r  e and the sum is 
over all r e in the a-type region ~2.  However, for q 
in a given direction, say q = (0, 0, q), the perpendicular 
phase factors are unity at all sites r~ = a J .  The effect of 
this can be summed to give a total scattering length for 
each site b~ (g) = }--~ b~, where g2 represents the plane 
perpendicular to z and _1_ indicates sum over x and/or 
y for 3D/2D systems. The results are therefore directly 
applicable for the configuration of infinite stripes or infi- 
nite layers of an arbitrary number of different structures 
in 2D and 3D, respectively. If we consider, for example, 
a single chain (say along the z direction) of higher- 
dimensional non-overlapping objects ~ ' s  (squares, discs 
etc. or cubes, spheres etc.), the only modification needed 
• • . ej_l j 
m (18) is F ~ ( j ) =  ~-~r=_ob~(r)exp(iqa~r). The shape 
function b~ j = bJ(r) c~n also arise as a result of a 
projection of an imperfect structure owing to defects 
(vacancies) - for example, the boundary regions of 
multilayer systems. The sum can be considered as an 
infinite sum over a product of a shape function and an 
infinite sequence of phase factors. The shape function is 
zero outside the projection on z of g2 and equal to b j (r) 
within. The Fourier transform can either be represented 
by the folding of the individual Fourier transforms: the 
'form factor /~ (q )  and the 6 functions for the a-type 
structure. It is also simply the discrete Fourier transform 

o o  

F ( j ) =  ~ b~J(r)exp(iqa~r). (30) 
~ - - O O  

It thus influences only the independent scattering term 
(22) and the bra and ket vectors (24). This result takes 
into account exactly the excluded-volume problem in 
one direction. There is no excluded-volume problem in 
having a similar but different parallel chain at a sufficient 
perpendicular distance so that no overlap occurs between 
the objects on the two chains. There can be any number 
of such chains. However, the projections onto the z 
direction of the shape functions can now overlap - yet 
the results (29) and (30) are still applicable and exact. We 
note in passing that Campbell's theorem (Champeney, 
1973) states that, for a completely random overlap of 
the projected elementary shape functions, the interfer- 
ence terms vanish, leaving only the first, independent, 
scattering term in (28). For very densely packed objects 
with excluded-volume restrictions in all directions, i.e. 
between the chains [for example, the dense hard-sphere 
problem (Torquato, 1995; Reiss, Frisch & Lebowitz, 
1959)], additional considerations must be taken into 
account. The present results do not include two- or 
three-dimensional correlations. 

3 .  S t r u c t u r e  f a c t o r :  e x a m p l e s  

Now we shall apply the general formulae derived in 
the previous section to get the analytical expressions 
available for interpretation of pertinent experimental 
situations. We shall treat structures with two alternating 
substructures, structures separated by empty regions (or 
orthogonal antiphases in e.g. YBCO) and alternating 
structures with an intermediate separating region of a 
third type. With these examples as guidelines, it should 
be easy to derive expressions for other cases of relevance 
for a particular experiment. Further, we derive the cross 
section for higher-dimensional objects (ideal), such as 
hut clusters on a surface, for a rough surface and for a 
terraced surface. 

3.1. Structure factor for alternating phases, multi- 
layers etc. 

The case of alternating structures is relevant for mul- 
tilayers of two structures with different lattice constants 
a s = a 1 and a~ = a 2 and scattering lengths b 1, b 2. This 
is also a rather realistic situation in YBCO if the oxygen 
content is sufficiently high (x ,-~ 0.7-0.8), in which slabs 
of ortho-I and ortho-II structures alternate. In this case, 
we have a s = a and a~ = 2a and b 1 = b 2. The transfer 
matrix W is given by (14). A detailed derivation, which 
is given in Appendix A, finally lead us to 

o~ 1 C ( q ) { [ ( 1 - / " i ) ( 1 -  T22)]/(1-/", /"2) + c.c.}, S(q) 

(31) 

C(q) 

= b~/[1 - cos(qal) ] + b~/[1 - cos(qa2) ] 

- bib2{ 1 - cos(qa]) - cos(qa2) + cos[q(a 2 - al)]} 

x {[1 - cos(qa,)][1 - cos(qa2)]} -1, (32) 

where C(q) reflects the internal structure of the two kinds 
of fragments, while the curley brackets in (31) reflect the 
effect of their distribution, which is our main concern 
here. The distributions in widths enter via 

/"~ = ~ D ~ ( g )  e x p ( i q a ~ g ) / ~ D ~ ( g ) .  (33) 
g / e  

For the special case considered as the introductory 
example, a 2 -- 2a~, one simply gets that C(q) = b2/[1 - 
cos(qa2) ] and the dependence on the lattice constant a~ 
of the intervening structure disappears. 

Further, if we let a - 1 represent 'empty' fragments 
(indicated by the subscript 0), it will be  more conve- 
nient to incorporate the leftmost particle of an 'empty' 
fragment into their a - 2 counterpart as its rightmost 
particle. Although the length of an 'empty' fragment was 
defined above as g >_ 3 [cf. (3)], we could generalize this 
particular case by allowing g = 1 (but g ¢ 2). Owing 
to the rearrangement of particles between the blocks 
compared with the case considered before, we should 
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use in this case 

F 2 = [1 - 1"2 exp(iqa2)]/[1 - exp(iqa2)], Fo = O. 

The only change with respect to (31)-(32) is a formal 
substitution: 

1`1 ~ 1`0-- 1"0 exp(--iqa2), ]-'2 ~ 1"2-- 1-~2 exp(iqa2) 
(34) 

and b 1 --+ b 0 - 0. This corresponds to a particle added 
to the structure fragment, making the 'empty' fragment 
really empty. This reveals a full (albeit hidden!) symme- 

1 in YBCO: added empty or occupied try around x -- 
chains to the ortho-II structure give the same diffuse 
scattering, except for the overall intensity, of course. 
We remark that the 'empty' phase might also be the 
alternatively oriented ortho-II phase. Equations (31) and 
(32) represent a generalization of the result derived by 
Fratzl et al. (1991). 

We now generalize a bit further and go beyond strict 
alternation, i.e. we allow for the 'empty' fragments 
to be adjacent to each other. This corresponds to the 
appearance of isolated chains in YBCO in a region with 
ortho-II ordered domains, which would be realistic for 

I The transfer matrix is then more complicated x < < ~ .  
and given by (15): 

1 (p  1 )  
W = 79Wo 

where p = 1 - W z / W  o relates to the probability of 
finding the isolated particles (chains). A straightforward 
but somewhat lengthy calculation yields 

S(q)  ~ C(q)(wo/2){[(1 - 1`0)( 1 - 1"2 )] 

x (1 - Foo F22') - '  + c.c.}, 

C(q) = b2/[1 - cos(qa2) ]. 

(35) 

The result is similar in form to that.,given by (31) after 
the folloving replacements:__ 1`1 ~ 1"o = 1"o exp(- iqa2) ,  
1`2 ~ F2 = [P+  F2(1-P)]exp( iqa2)"  We remark that 
the case of alternating single-periodic and 'empty' frag- 
ments can be simply obtained from the example con- 
sidered above by the change 2 ~ 1. The limiting case, 
where we assume a random (uniform) distribution of 
the length of the 'empty' fragments [790(g ) = constant] 
was considered separately by Uimin (1994) and the line 
shape was calculated in detail by Fiig et al. (1995) for 
several important distribution functions Do,(g ). 

Finally, we mention the case that is relevant for 
alternating multilayers of two different structures, a = 1 
and 2, where the interface '0' may be modified from 
the structures of both. This case could also be relevant 
for the phase-separation problems in the presence of 
surfactants. Thus, we consider the sequence 1 .  0 .  

2 .  0 .  1 • 0 .  2 .  0 .  1 • 0 .  2 .  0 . . . .  Let us denote 
the lattice constants and scattering lengths by a 0, a 1, a 2 
and b 0, b 1, b 2, respectively. Using the same procedure, 
we find after considerable algebra (the intermediate 
formulae that lead to the equation below are given in 
Appendix B) 

$(q)  ~ V-1  {Co(q)(1 - T00)[2- 1"1 - F-221 

+ Cl(q)(1 - r l)[1 - to(1 + 1"2)/2 ] 

+ C2(q)(1 - 1"2)[1 - Fo(a + F1)/2] 

- c 0 1 ( q ) ( 1  - F o ) ( a  - F , )  

- c02(q)(1 -/70)(1 - F2) 

- - C 1 2 ( q ) 1 ` o ( 1  - -  r i ) (1  - v2)/2} + c.c., 
(36) 

m 

where F = 2 - Fo(F l + F2) and 

C~(q) = 1 2 gb,~/[1 - cos(qa~)], 

C ~ ( q )  = b~bo { 1 - cos(qa(~) - cos(qa~) 

+ cos[q(a~ - a~)]} 

x {211 - cos(qa~)][1 - cos(qa/~)]} -1. 

Equation (36) is a generalization of (31)-(32) for the 
case when a subsystem '0' is forced to separate subsys- 
tems '1' and '2'. In (36) as in (31)-(32), we can identify 
scattering terms arising from the pure. phases (~  b2), 
which are modified from the independent scattering 
terms, as well as interference terms. Equation (36) 
represents a generalization of the formula developed by 
Fullerton et aI. (1992), where they consider a particular 
case of Gaussian interface layers and a finite stack of 
layers. Further, their formula must be calculated by a 
numerical solution. They give an excellent discussion 
of a number of features of relevance for the multilayer 
scattering. These considerations can be used for the 
present case, such as the discussed strain effects of 
the interface layers, which would modify the interface 
scattering amplitude F 0. Our formula is valid in the limit 
of very many layers; if one wants the result for a small 
number of layers using our method, one can go back 
to (20). 

Performing an expansion in q of S(q)  of (31)-(36) 
i n  terms of the moments of the distribution functions, 
e,~ = EeenD~(e) /79~,  it can be shown that 8(q)  varies 
with q as A + Bq 2 for q approaching zero (or any other 
Bragg point for the structure). For narrow distributions 
around some mean length, g~, the coefficient B may be 
positive but usually it is negative and the line shape is 
close to a Lorentzian or a Gaussian one for sufficiently 
small q. The line shapes were discussed in detail by Fiig 
et al. (1995). In general, S(q)  is finite for q =- 0 and 
positive, i.e. A > 0. Additional correlations between the 
lengths in the cluster distributions are needed to make 
S(q = 0) vanishing, as discussed by Fratzl et al. (1991). 
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3.2. Structure factor  for  hut clusters 

Recently, the growth of clusters of one metal on 
the surface of another metal has been observed to 
occur as small elongated 'pyramidal '  clusters (Mo et al., 
1990; Kern et al., 1991), so-called huts, which are well 
oriented according to the surface structure. They have 
a distribution of sizes but all have the same slope of 
facets. This is a situation that can easily be described 
by our general formalism and represents an example 
of a case of variable scattering length, as discussed 
around (30). Let c~ = 1 represent the huts with lattice 
constant a 1 and scattering length b l, and /3 - 2 the 
intervening substrate structure with lattice constant a 2 
and scattering length b 2. We disregard any deformation 
of the huts from the perfect structures, although this is 
known to occur and probably is instrumental for their 
stability (Shchukin, Borovkov, Ledentsov & Bimberg, 
1995; Shchukin, Borovkov, Ledentsov & Kop'ev, 1995, 
1996). Two cases will be distinguished: in the first case, 
the top-layer substrate atoms are considered as non- 
equivalent, and we assume that these contribute to the 
scattering amplitude situated between the huts, whereas 
the structure of those under the huts do not contribute (as 
a model). In the second case, the substrate is considered 
as perfect, not contributing to the diffuse scattering at 
all, and the space between the huts can then be regarded 
as empty, albeit of integer length in units of the lattice 
spacing a 2. When scattering in the surface plane and 
q perpendicular to the long dimension of the huts is 
considered, the problem can be described by our one- 
dimensional theory. The only modification according to 
(30) is then in the scattering length for the individual 
c~ - 1 type fragments. The hut clusters are supposed to 
be built of terraces of unit step a 1 and of width / / a  l ,  

providing a uniformly terraced slope. An example for 
u = 1 is shown in Fig. 2, where two cases, L even and 
odd, can be distinguished. For L odd (L = 2g + 1, one 
atom is allowed on the top), it is easy to find 

F(2g + 1 ) = b l { 1  + e x p [ i ( L  + 1 ) q a l ]  

- 2 exp(iqalL/2 ) exp(iqal /2  ) } 

x [1 - exp(iqal)] -2, 

whereas, for L = 2g + 2 (two atoms on the top), one 
obtains 

F(2g + 2) = b¿ { 1 + exp[i(L + l)qal]  

- exp(iqalL/2)[1 + exp( iqa , /2)]}  

x [1 - exp(iqa,)] -2. 

For any integer u, there are 2u hut clusters that are 
distinct through the number of atoms, j ,  forming the top 
terrace. A general formula, which can be derived for any 
integer u, is with L = 2g + j  and j = 1 . . . . .  2u: 

F(L) = bl{1 + exp[i(L + 1 ) q a l ] -  2fj(q, L)} 

x {[1 - exp(iqal)][1 - exp( iuqal)])  -1, 

(37) 

where 

1 exp( iqalL/2 ) {exp[iqa I (2u - j)/21 f j (q ,L)  = 

+ exp( iqa l j /2  ) }. (38) 

First, we consider the case where the surface atoms of 
substrate between the huts and the hut clusters them- 
selves contribute to the scattering amplitude. The ma- 
trices M are given by (45). By means of the auxiliary 
formulae in Appendix C and (28) and (33), we find the 
st_vmcture factor for hut clusters on a substrate [defining 
F1 = 1"1 exp(iqal) ,  1"2 =/"2 exp( - iqa l ) ]"  

$(q)  cx C 1 (q) {[4(1 - 7)(1 - ~/"2) - (1 - F 1)(1 - /"2)]  

x (1 -/"11"2) -1 + 7 -  1 + c . c . }  

+ { C12(q)[(1 - / "2 ) (  1 +/"1 - 27) 

x (1 - F 1/"2) -1] + c.c. } 

+ C2(q)[(1 - / " 1 ) (  1 - / " 2 ) / (  1 - / "1 /"2)  
+ c.c.], (39) 

where 

C l ( q )  = ( b ~ / 8 ) { [ 1  - c o s ( q a l ) ] [ 1  - cos(uqal)]} -1 

C 2 ( q )  = ( b ~ / 4 ) [ 1  - c o s ( q a 2 ) ]  - 1 ,  

C12(q  ) = (bxb2/2)[exp(iqal) + exp(iqa2) ] 
× {[1 - exp(iqal)][1 - exp(iqa2)]} -1 

x [1 - exp(iuqal)] - l  

o o  
o o o o  o o  

o o o o o o  • o o o o  

Tooo  Too o o ~ ~ ~  
0 " LI - - "  L 2 - - - "  ~ ~ L4 L5 

Fig. 2. Huts represented by trapezoidal structures. The allowed number of atoms on the tops is either one (L odd) or two (L even). 0, L2, L4 etc. 
label conventional beginnings of the huts, whereas L~, L3, L5 etc. do the same for the substrate. Simultaneously, Lt, L3, L5 are the widths 
of the huts, L2, L4 etc. are the widths of the surface areas. 
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and 

2 

i f =  ~ }-'].[D,(2ug +j)/D1]fj(q,  2ug +j) ,  
£ = 0 j = l  

2 
= ~ Y'~.[D1 (2v'g +j)/791] cos[(j - t.,)qax], 

g = 0 j = l  

where 7 and ~ tend to 1 for q ~ 0. 
Next, we consider the case where we assume no 

scattering from the atoms between the huts. For this 
case, we put b 2 -- 0 in (39) and only the first term re- 
mains. This is not unexpectedly similar to the alternating 
filled--empty case given by (31) and (34). However, it 
is clearly much more complicated both with respect to 
the prefactor C~ (q) and the way the width distributions 
enter. A squared cosine factor C 1 (q) arises if a unit step 
slope, u = 1, is assumed. Equation (39) has a remarkable 
1/q 2 dependence for small q. 

3.3. Structure factor for 'mountains' or a rough 
(0, 1, O) surface 

There is another interesting application of our general 
approach to a partly disordered system. Let us consider 
a surface consisting of alternating facets of (1, 1, 0) and 
( - 1 ,  1,0) planes perfectly elongated in the z direction. 
We assume that the average slope is zero and that the 
distribution of ups and downs is equal, i.e. on average 
we have a (0, 1, 0) plane. An example is shown in Fig. 
3. We thus consider q in the x direction. We may choose 
the horizontal level arbitrarily because shifting it by one 

vertical unit gives a regular contribution to the scattering 
amplitude that contributes only to the Bragg scattering, 
which is not under discussion here. The details of the 
derivation are given in Appendix D. The result is the 
following very simple and compact formula for the 
scattering cross section for a rough (0, 1, 0) surface: 

S(q) c~ b 2 {2[1  - cos(qa)]} -2 

x {(1 - V)/(1 + F)  + c.c.}. (40) 

Again, the squared cosine factor arises from the assumed 
unit steps. Upon expansion, this makes S(q) vary as 
1/q2 for small q near Bragg peaks. 

3.4. Structure factor for 'terraces' 
We consider finally a system of terraces with arbitrary 

widths g given by a distribution function D(g). The 
terraces are separated by steps that are assumed to be 
only of unit step height, up or down. The steps are 
supposed to be straight and oriented along z and we 
consider again q in the x direction. The terrace heights 
(m' s) and terrace x coordinates (L' s) are shown in Fig. 4. 
The widths of the terraces are related to the coordinates 
by g k - - L k -  Lk-l .  The contribution to the scattering 
amplitude from the ( k -  1)th and kth terraces is 

d I { mk_ 1 [exp(iqaLk_l) - exp(iqaL~)] 

+ mk[exp(iqaLk) -- exp(iqaLk+l) ] }, 

where d I = [1 - exp ( iqa ) ]  -1 We can rearrange the 

m2k 0 o o o  0 
O O O O O  O O O  

O O O O O O O  O o o o o  
0 O 0  0 0 m2k+/ 0 0 0 0 O 0  
O O  O O O O O O O O O O O O O O O O O  
OO ~ k _ l O O O O O O O O O O O O O O  
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O  

Fig. 3.'Mountains':thecoordinates(L,m) ofvalleys(odd)andtops(even)areshown. 

O 
O O  

O O O O  
O O O  O O O O  

O O O O O O O O O  

Lk.1 Lk Lk÷l 

m k • • 
0 " ~ 0  m k + l 

ink_ 1 • • • • 0 • • • • • • 

• • • • • 0 0 0 0 0 0 0 0 0 0 0 0 • • • 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • 

Fig. 4. 'Terraces': x coordinates of steps (L), their (absolute) heights (m) and widths of terraces ((') are shown. 
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summation order and get 

.A(q, k) = d t ~ exp(iqaLj)(mj - mj_l) .  (41) 
j=l  

According to our assumption, the height difference is 
mj - mj_l = + 1, which can be considered as an Ising 
variable, aj. For a rniscut surface, one generally has only 
one kind of step and all crj have the same sign. However, 
for generally rough surfaces, the adjacent (rj and o-~+ 1 
can have different signs. Therefore, not only averaging 
with respect to the widths of terraces must be done, 
but also with respect to the ensemble of cr's. As in the 
case of 'mountains',  the straightforward calculation of 
/C(q, k) is preferable (the reader may f indmore  details 
in Appendix D), yielding the scattering for an arbitrarily 
terraced surface with unit steps 

$(q) cx b 2{211 - cos(qa)]} -1 

x 1 +  ~ ( T m + c  ) g i n '  
m = l  

(42) 

where T = ~_,eexp(iqag)l?(g)/Y~'~e 19(g) and gm = 
crioi+ m. For alternating steps, gm = ( - 1 )  m corresponding 
to a stepped (0, 1, 0) surface, it is easily derived that the 
result becomes similar to the 'mountain' case (40), 
except that the cosine factor is not squared, as could be 
expected. Assuming a most simple decoupling scheme 
for the correlations gm - -  O ' i O ' i + m  - ' -  ~2, one obtains 

S(q)  oc b 2{211 - cos(qa)]} -1 

x {1 + P2[F/(1  - F )  q- c.c.]}. (43) 

This case corresponds to a rough randomly stepped 
st/rface with the average slope 0-/f relative to the (0, 1, 0) 
plane, where g = 2ee (e)/Eez (e) is the mean 
width of the terraces. If the slope is zero, one cannot 
determine the width distribution for such a surface in 
the present scattering set-up. An analytical solution for 
S(q)  can also be found for an ensemble of correlated 
a '  s. It is based on the transfer-matrix idea, which is very 
similar to that developed above in (5)-(13). Details of 
the derivation for the ensemble of r7 variables are given 
in Appendix E. The general form of the structure factor 
for correlated steps on a terraced surface is 

S(q)  oc, b 2{2[1 - cos(qa)]}-x {1 + ( [ r / ( 1  T)] l 

x [(1 - t)(1 - if)  + t#2]/[1 - (1 - t)F] 

+ c.c.)}, (44) 

where t is the independent matrix element of the o- 
transfer matrix. In a special decoupling regime, t = 1, 
(44) reduces to the form of (43). For zero slope, # = 0 
and t = 2, we get the case for alternating steps on a 
(0, 1, 0) surface, discussed above. 

4. Conc lud ing  remarks  

We have derived the exact result for the (X-ray or neu- 
tron) diffuse scattering from different non-overlapping 
structures in one dimension. The scattering from real 
objects such as multidomains, multilayers and rough or 
decorated surfaces is also explicitly given. We have in- 
cluded the effects of the internal structure of the objects. 
Since the diffuse scattering is emphasized differently 
near different Bragg peaks, it is possible to use this to 
single out various distribution functions. It is therefore 
important to extend the study of diffuse scattering, 
traditionally done as small-angle scattering, to include 
that near other Bragg peaks. With these tools, it should 
be possible to analyze scattering data from a variety 
of nano- or mesoscale structures and thereby derive 
the statistical distribution of the equilibrium or non- 
equilibrium patterns of interest. The scale that can be 
investigated is set by the attainable experimental q-space 
resolution. It is required that real-space techniques (or 
theory) has identified the typical structural elements. 
The two kinds of technique are therefore in this case 
necessary and complementary. We have included the 
possibility of specifying the distribution of all involved 
structures; however, we have not included correlation 
between the neighboring patterns. This is sometimes 
important as well and will be the subject of further work. 
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enberg for continued interest. GU acknowledges support 
by the research program Sonderforschungsbereich 341, 
K61n-Aachen-Jtilich, and the hospitality at RisO National 
Laboratory, where this work was initiated. 

A P P E N D I C E S  

For the purpose of illustration, we present in the Ap- 
pendices the set-up formulae for a calculation of the 
cross section• The algebra involved is straight forward 
but quite long and tedious. Use of Mathematica is of 
considerable help. 

A P P E N D I X  A 
Al ternat ing  phases  

For the case of alternating phases, (14) and (27) give, 
with a = 1 and /3 = 2, 

S = F~ 0 ' Fl 

(45) 
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Equations (24) now read 

l ( l _ b l ( ~ l l  - 1)exp(-iqal) ' l  b2(~22 - 1) ~ 
<LI = ~ - e - - ;p-p( : i~ : ) ] '  

g 

l ( b l ( 1 - - f f l l ) / [ 1 - e x p ( i q a l ) ] )  
[R} = g b2(1 _ ~-2)/[ 1 _exp( iqa2)  ] , 

which results in the following requisite for calculating 
S(q)  with (28): 

(F*(1)F(1)) 

_ l  f ( b ~ ( 1 - ~ ( )  b2( l -T22)  ) } 
- - 4  (~k 1 : cos--(qa---~) + 1 - cos(qa2) + c.c. 

MIR) = ( I 
b 1 ( 1 - F 2 )  

1 - exp(iqal)  1 - -~1-F22 fl2 

b 2 ( 1 - F - I )  r ' 
1 - exp(iqa2) + 1 - -F- 1 ~ J12 

where fl2 : bl/[1 - exp(iqal)] - b2/[1 - exp(iqa2)]. 

APPENDIX B 
Multilayers with intervening layers: 

. . . 1 . 0 . 2 - 0 . 1 . 0 . 2 . . .  

The matrix elements of W are in this case W10 = W2o = 
%1 --- %2 = 2/19. Equations (22), (24) give 

t ( 2 b o ( T o o - 1 )  b~(F--~-l) b2(T2-1)  ) 
(L[ = ~ 1 - exp(-iqao)' l --ex--p(~iq--a,)' 1 - exp----(~iqa2) 

APPENDIX C 
Hut clusters 

The width of a hut is not restricted. The huts are assumed 
to have uniform slope determined by terraces of width 
ua~. With such an assumption, we even allow a hut to 
be of unit height but in this last case its width cannot 
exceed 2ua 1. We remind readers that all the possible 
geometrical configurations of hut clusters as well as the 
distances between them must obey some probabilistic 
distributions. 

In order to obtain the set-up formulae, we note 
that upon averaging the function f j (q ,L)  exhibits the 
following properties: 

fj(q, L) exp( - iLqa  I ) = fj* (q, L) exp(iuqa 1 ), 

• 1 { 1 + cos[(j - u)qa,]}.  f j (q ,L) f j  ( q , L ) =  

The set-up formulae are then 

{F(1)F*(1)) = b~ {[2 + F, e x p ( i q a , ) - 4 7  + ~] + c.c.} 
811 - cos(qal )] [1 - cos(uqal)  ] 

{ 1 -  F2 + c.c.} 
+ b 2 4 [ 1 -  cos(qa2) ] 

blexp(--iqa )[1 + -ff[exp( iqal ) - 2~]  

) b2(F2 -- 1) 
1 - exp( -- iqa 2) ( II+ ex  iqa) ,l .exp iqa l) 

]R)-- ½ - - - [ - - i - - - e x p ( ~ ] -  - -  . 
b~¢1 - ~ ) / [1  - exp(iqa~)] 

/2b0(1 - fro0)/[1 - exp(iqao)]~ 
IR) = ¼ | b l ( 1 -  T l l ) / [1 -exp( iqa l ) ]  ) \ b2(1 - F2)/[1 - exp( iqa2)  ] 

[~_ l-to 
( F * ( 1 ) F ( 1 ) )  = 1 - c o s ( q a o )  

+ b  2 1 - T  1 

8 1 - cos(qal) 

8 1 - cos(qa2) 
+ C.C. 

S = 
( - -) 0 1"1/2 1"2/2 

T o o o 
o o 

M = 

2 (F1 + F2)/2 

1 - '  F-22) 1 ~ro(rl + 1 

11) 
ro  ro  • 
ro  ro  

APPENDIX D 
'Mountains' or rough (0,1, 0) surface and terraces 

The defining elements of the 'mountain' case are shown 
in Fig. 3. The sum over scattering centers whose vertical 
projection lies between the valley Lzk - x and the top Lzk 
is 

L2k -- 1 

2 
n = L ~ _  I 

[m2k_ , + (n - L2k_,)] exp(inqa) 

~2k- l 
-- exp(iqaL2~_l) ~ (m2k_ 1 + n) exp(inqa) 

n=O 

= exp(iqaL2~_l ) { m 2 k _ l  S 1 (•2k) + $2 (e2k) }, 

where 

(46) 

Sl(g ) = d,[1 - exp(iqag)], 

S2(g ) = d2[1 - exp(iqag)] - d,g exp(iqag), 

d I = 1/[1 - exp(iqa)], d 2 = d~ exp(iqa). 
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The contribution of the centers between the top L~ and 
the next valley L2~+l is 

L ~ +  l - -  1 

E [mek -- (n -- L2k)] exp(inqa) 
n = L z t  

= exp(iqaL2k ) {m2~S1 (g2k+l) - S2(g2k+x)}. (47) 

We can rearrange (46) and (47) to the following form: 

exp(iqaL2k_l ) {(d~m2k_ ~ + d2)[1 - exp(iqag2~)] 

-- dl g2k exp(iqag2~) } 

and 

exp(iqaL2k) { (d, mzk - d2)[1 - exp(iqae2k+l)] 

+ d ae2k+l exp(iqae2~+l) }. 

Because m2k = m2k_ 1 + g2k and m2k+l = m2k -- gZk+l, 
these two contributions can be resummed to 

exp ( iqaLek_ 1 ) (de ÷ d l m2k- l ) -- 2d2 exp ( iqaL2k ) 

+ exp(iqaL2k+l ) (d2 - dlm2k+l ). 

Summation performed over all the 'mountain' peaks 
finally results in the following scattering amplitude ex- 
pression: 

.A(q ,k)  = - d 2 ~--](-1) k exp(iqaLk) k 
= dz{exp( iqagl)  - exp[iqa(gl + g2)] 

+ exp[iqa(g, + g'2 + g3)] - "  "}" (48) 

The direct calculation of E(q ,  k) is perhaps easier here 
than using the general formula (28). We obtain 

l~(q,k)  -- I C ( q , k -  1) + [1 - cos(qa)] -2 

× {1 - r / ( l +  r )  - r * / ( l +  F~-)}, 

which gives the compact formula (40) for the scattering 
from a rough (0, 1,0) surface. 

In the case of 'terraces', the scattering amplitude 
differs slightly from (48): 

A(q, k) = d I E exp(iqaLk) °k 
k 

: d, {exp(iqagl)  e I ÷ exp[iqa(g I + gz)] °-2 

+ exp[iqa(gl + 82 + g3)] °3 + ' '  "}" 

T h e n ,  

1C(q,k) = 1C(q,k - 1) + {211 - cos(qa)]}- '  

{ (m~= -m ) )  x 1 +  F g m ÷ C . C .  , 
1 

which results in (42). 

APPENDIX E 
Transfer-matrix formulation of tr correlations 

Let N be the total number of unit steps among which 
N+ and N_ are positive and negative, respectively, and 

w+ = N + / N ,  w_  = N _ / N .  

Now, let us consider N pairs of adjacent steps, which 
may appear in the following sequences: (+ +), ( + - ) ,  
( -  +)  and ( -  - ) .  The corresponding numbers will be de- 
noted as N,~, °2 and a definition of double-o- probabilities 
is a complete analog of (6): 

wo,o2 =N,~1,~2/N. 

We define a decoupling scheme as in (7): 

Wo.  iO. 2 ~ "  WO.I T O ' I o ' 2 W o "  2 ,  

where T is the 2 × 2 symmetric unnormalized 'transfer' 
matrix 

T = (T++ T + _ )  
\ T _ +  T__ ' 

whose elements satisfy two equations [cf. (8)]: 

T,~o,w~, = 1. (49) 
O-! 

The decoupling scheme g,, -- ye, mentioned above in 
connection with (43), corresponds to a transfer-matrix 
description with T++ = T -- T+_ -- 1 and 
w+ = (1 + ~)/2,  w_ = (1 - ~) /2.  The correlation 
function, gin, which enters the general equation (42), 
can be expressed as 

gm = ~--]~"" ~ [w+~l...~ .... ,+ +W-~z...~ .... z- 
(71 (Tin-- I 

- -  W + o l  . . . O m -  I - -  - -  W - - o h  . . . o ' m -  I + ] "  

A knowledge of w~0,~ ,...~,. would allow a calculation of 
the right-hand side of (42). The analog of (9) now reads 

Woo~,...o,,, = WooTooo~Wo~Tojo2Wo2 • • • wo .... ~ To .... ~o,,,W o,,, • 
(50) 

The important sum 

" " " W o ' o ' l  . ' -O'm-- I O'! ' 
m----I O'1 O'm--I 

which enters (42), can be rewritten by introducing the 
2 × 2 matrix O, whose matrix elements are defined as 
@,~o2 = ToL,~2w,~2" According to the decoupling scheme 
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of (50), we obtain 

Go(,, = wo ~ [ ( F o ) m F T ]  
m=0 °'°'1 w ° ' '  

(51) 

The matrix on the right-hand side of (51) has the form 

( 1 - F O ) - ' T T =  { T / [ ( 1 - T T + + w + ) ( 1 - - f f T  w ) 

- U r + _ r _ + w + w _ ] }  

(r++ + r+_ ) 
x \  r_+ - ' 

where 7-+ = F ( T + _ T _ +  - T + + T _ _ ) w + .  Using the 
relation between gm'S and G, i.e. 

-Frog m = G ++ + G - G+_ - G_+,  
m = l  

and expressing T++ and T_ _, using (49), through 
t = T+ _, we finally obtain (44). 
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